4.1 The Nature of Heredity

P. 138 - 141

Genetics: the study of _____ and variation.

- _____: the passing of traits from parents to their offspring.
- _____are long coiled strands of DNA (deoxyribonucleic acid) found in the nucleus of eukaryotic cells

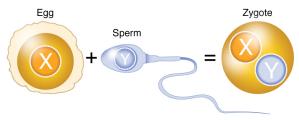
- An allele is a variant form of a gene. Some genes have a variety of different forms, which are located at the same position, or locus, on a chromosome

Chromosomes

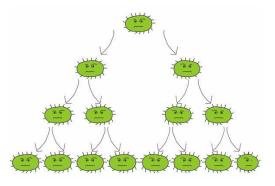
- occur mostly in sets in multicellular organisms.
- _____cells contain the normal number of chromosomes (2n)
- _____cells have half the normal number of chromosomes (n)
- polyploid cells contain three or more sets of chromosomes.

Asexual Reproduction

• The production of offspring from a


_____ parent by cell division

(without the use of sex cells)


- <u>Advantages:</u>
 - Do not need to seek out a mate (limit energy expenditure and risky activity)
 - Nothing left to chance identical (invariability of offspring)
- <u>Disadvantages</u>
 - Little variation if the environment changes, individuals may no longer be well adapted

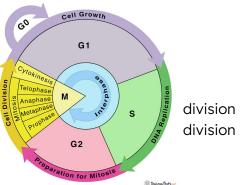
Sexual Reproduction

- Offspring are produced from the ______ of two sex cells, usually coming from two different parent organisms.
- Advantages:
 - ______of offspring (non-identical) If the environment changes, some individuals may be better able to adapt.
- Disadvantages:
 - Need to have different sexes, mating calls or mating dances, etc.
 - Sex is biologically _____- attracting a mate can also attract predators (ie. bright coloured peacock).

Pg 141: # 1,5,6 & 7

4.2 Asexual Reproduction

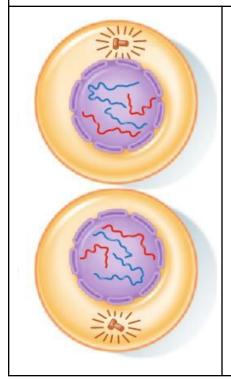
P. 142 - 149


Modes of Asexual Reproduction

- Strawberry plants can send out "_____".
- Hydra can produce offspring by outgrowths of their bodies called "_____."
- Female aphids produce female offspring (without a male) in the spring.
- Fungi can reproduce through______, when a piece breaks off and becomes independent.

Cell Division

- Cell Division a necessity for reproduction
- Cell division consists of both mitosis and cytokinesis
 - ____: nuclear


٦

Stages of Mitosis

MITOSIS	
centrioles	 Interphase: (longest phase of cell cycle) Cell grows and carries out functions Genetic material is in the form of thread-like Replication of chromosomes results in pairs of sister chromatids attached at the centromere (same genes at the same loci).
sister chromatids	 Prophase: Prophase is the first phase of mitosis During prophase the chromosomes condense and are visible under a microscope. (in animal cells) separate and move to opposite ends of the cell Nuclear membrane starts to dissolve

 Metaphase: Centrioles organize spindle fibres Centromere anchors the spindle fibre Metaphase is the second phase of mitosis Spindle fibers move and align(each composed of sister chromatids) in the centre (equator) of the cell.
 Anaphase: This is the third phase of mitosis Centromeres divide Sister chromatids(chromosomes) separate and move to poles of the cell If mitosis proceeds correctly, the same number and type of chromosomes will be found at each pole of the cell.
 Telophase: This is the last phase of mitosis Chromosomes reach opposite poles of the cell and begin to unwind Spindle fibres dissolve Nuclear membrane forms around

CYTOKINESIS

•	Mitosis is immediately followed by
	, when the cell
	divides its cytoplasm and organelles, into two new daughter cells
٠	In many cells (protist, fungi and animal) a develops
•	In plant cells, vesicles produced by golgi
	apparatus gather, then fuse, on both sides of the equator; this cell
	will then become
	the cell wall

Biotechnology

Biotechnology is the field of biology that involves the use of living things in engineering, industry and medicine.

Plant Cloning

- In 1958, carrot plants were first cloned using single carrot cells
- Commonly used to produce strains of plants with identical characteristics

Animal Cloning

- In 1996, Dolly was the first mammal to be cloned
- Removed _____ cell from sheep to be cloned
- Removed nucleus from egg cell of an egg donor
- Fused body cell with ______ egg cell and stimulated the egg cell to grow and differentiate.
- Inserted cell into the uterus of third sheep (surrogate mother)
- Dolly was born 5 months later!

Animal Cloning - Implications

- Shorter lifespan and premature aging (e.g. Dolly had arthritis)
- Suffer from a variety of ______ implications (e.g. Dolly had lung problems).

Applications and implications of Cloning

- _____production of high quality livestock and crop plants
- Implications: expensive, lack variation

- Cloning genetically ______organisms
 - Ex. Human _____ gene inserted into safflower plants
- Cloning endangered species offers alternative when captive breeding proves difficult
- Cloning extinct organisms difficult because of lack of DNA

4.2 Homework: Pg 151: #1, 2 & 6

4.3 Sexual Reproduction

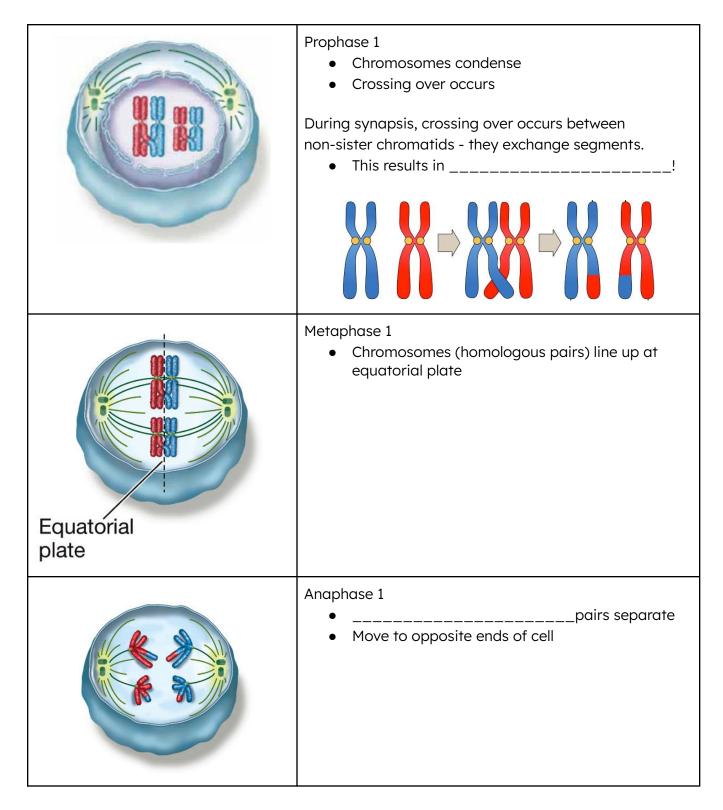
P. 142 - 151

Sexual Reproduction

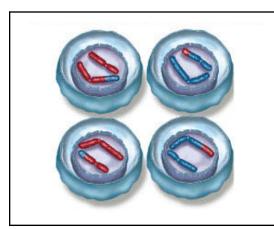
- Unlike asexual reproduction, sexual reproduction produces genetic
- It involves two key processes:
 - 1. Formation of ______ sex cells called gametes
 - 2. Fertilization when the sex cells join to form a _____

Modes of Sexual Reproduction

- The sex cells (gametes) of different organisms vary considerably but most species produce two types.
- In animals, _____ produce sperm and ovaries produce egg cells.
- Plants (inc. mosses and ferns) also produce gametes
- in higher plants, gametes are produced in _____ and flowers and sperm is spread as pollen grains
- Many species have male and female individuals while others are
- _____·


Sexual reproduction depends on meiosis

- It is a two stage division in which the resulting ______ cells have half the number of chromosomes (haploid) as the parent cell
- Results in the formation of gametes.

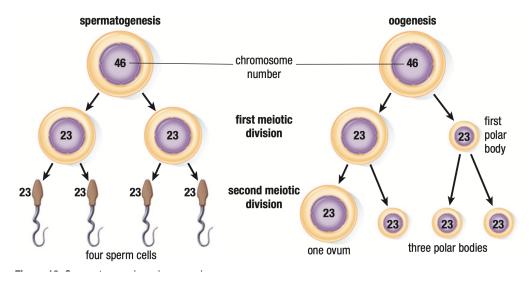

Homologous pairs

- Humans receive one set of DNA from an _____ cell, and one set of DNA from a sperm cell.
- As a result, all our somatic cells have 23 PAIRS of chromosomes
- We call these pairs _____ PAIRS.
 - Have similar structural features (e.g. size, banding patterns, centromere positions)
 - Have the same ______ at the same loci position
 - while the genes are the same, ______, a form of a gene, may be different
 - Alleles help account for different traits
- Pair up with each other during ______

Steps in Meiosis - How gametes (haploid sex cells) are produced

 Telophase 1 Nucleus completes division Nuclear membrane reforms Cleavage furrow
 Prophase 2 New spindle fibers form Chromosomes
Metaphase 2 Chromatids line up at theplate
Anaphase 2 •separate
Telophase 2 •separates

Product of meiosis:


- Result is 4 _____cells
- Haploid cells have half the number of chromosomes as parent cell

Random Assortment of Homologous Chromosomes

- Random assortment occurs in _____1
 - Random line up of homologous chromosome pairs at the cell's equator helps to ensure ______.
- The number of possible combinations of chromosomes depends on the # of chromosome pairs.
- For diploid (2n) organisms, the number of possible combinations is 2ⁿ
 - For humans, the number of possible combinations is $2^{23} = 8388608!$

Gametogenesis

- Gametogenesis: the production of ______(sex cells) in animals
- _____: production of mature sperm cells
- _____: the production of mature egg cells
 - In oogenesis, cytoplasm does not divide evenly
 - Cells that don't receive enough cytoplasm are called polar bodies
 - One cell (ovum) is produced

Types of Cells

- <u>Somatic Cells</u> Human somatic cells have 46 chromosomes (23 pairs of chromosomes) said to be diploid (2n) because they have double the number of chromosomes as gametes.
 - Most reproduce by mitosis
- The n value of a cell tells you how many PAIRS of chromosomes that cell has. 2n = how many chromosomes there are total. So for humans, 2n for our somatic cells = 46
- <u>Gametes</u> Reproductive cells have 23 chromosomes and are said to be haploid (n) because they have half the number of chromosomes as somatic cells.
 - n= the haploid number of chromosomes in a species;
 - \circ for humans, n=23
 - Must be produced by special cells in the ovaries/testes through meiosis

Sex chromosomes

- In females, sex chromosomes consist of a matching pair of
 - _____chromosomes (XX)
- In males, sex chromosomes consist of a ______matching pair (XY) one is much smaller than the other. The larger of the two is a homologue to the sex chromosome in the female (X)

Sex Determination Methods

- Some species have different systems to determine sex (other than the XX/XY system):
- For some reptiles sex of offspring is ______ dependent
- Some fish are born female then become male or vice-versa

Karyotype

- A karyotype is a _______of an individual's chromosomes that have been sorted and arranged according to size and type
- Note there are 1 pair of sex chromosomes, the other 22 pairs are autosomal chromosomes.

Karyotypes - Uses

- Karyotypes can be used to look for abnormal numbers or structures of chromosomes.
- A karyotype is an individual's collection of chromosomes.
- The term also refers to a laboratory technique that produces an image of an individual's chromosomes.
- The karyotype is used to look for _____numbers or structures of chromosomes.

How are karyotypes made?

• Technicians remove a small sample of ______(i.e. blood or amniotic fluid)

	$\rangle\rangle$	The second s	C		\$1595 2000	do-constate colfications
1	2	3	C.		4	5
Coding and the second		ALCOND.	1 and 1	Series Series	秋 朝	Avenues Permits
6	7	8	9	10	11	12
oreast a		NA A		240	200	88
13	14	15		16	17	18
**	and and a	ë	8 81	f	11	
19	20	2	1 22	:	×	Y

- Mix it with a solution that stimulates mitosis
- Colchicine is added to stop the cells in _____and the sample is placed on a slide
- A stain is added to make light and dark bands appear on the chromosomes and a photograph is taken
- The chromosomes are cut out and arranged in homologous pairs

Homework:

• Pg. 160 #3-9, 11