

Sex Determination

- Sex is determined by genes found on the X and Y chromosomes

Sex Determination

- Sex is determined by genes found on the X and Y chromosomes
- Females: all eggs have X chromosome
- Males: $1 / 2$ sperm cells contain X; and the other $1 / 2$ contain Y

Sex Determination

- There is a $50 / 50$ chance of child being a boy/girl

Sex-Linked Disorders

- Defined: Inherited conditions found on

X chromosome

- Usually recessive
- Females: XX chromosomes

$$
\begin{aligned}
& X^{H} X^{H}=\text { healthy } \\
& X^{H} X^{h}=\text { healthy carrier } \\
& X^{h} X^{h}=\text { disease }
\end{aligned}
$$

- Males: XY chromosomes

$$
\begin{aligned}
& X^{H} Y=\text { healthy } \\
& X^{h} Y=\text { disease }
\end{aligned}
$$

$X^{H} X^{h}$
$X^{h} X^{h}$

- Rare in women (back-up X chromosome)

Sex-Linked Disorders

- Defined: Inherited conditions found on X chromosome
- Usually recessive
- Females: XX chromosomes

$$
\begin{aligned}
& X^{H} X^{H}=\text { healthy } \\
& X^{H} X^{h}=\text { healthy carrier } \\
& X^{h} X^{h}=\text { disease }
\end{aligned}
$$

- Males: XY chromosomes

$$
\begin{aligned}
& X^{H} Y=\text { healthy } \\
& X^{h} Y=\text { disease }
\end{aligned}
$$

- Rare in women (back-up X chromosome)
- Examples of disorders:

Types of Colorblindness

Normal Vision
Deuteranomaly
0.66\%
0.59\%
0.56\%
0.016\%
0.01\%
<0.0001\%

Protanomaly
Protanopia

Deuteranopia
Tritanopia
Tritanomaly
Achromatopsia

Deuterkroopial(2.7\%)

Protariфpím (00.59\%)

Colorblind Test:

Do you see a number inside the picture?

53

Colorblind Test:

Do you see a number inside the picture?

12

Colorblind Test:

Do you see a number inside the picture?

6

Colorblind Test:

Do you see a number inside the picture?

Colorblind Test:

Do you see a number inside the picture?

6

Hemophilia and the Royal Family

1 min: Discuss with your neighbor.

Jen is a healthy carrier $\left(X^{H} X^{h}\right)$ of hemophilia and Adam has no history in his family ($\mathrm{X}^{\mathrm{H}} \mathrm{Y}$).

What is the probability of:
a. Daughter with hemophilia?

0\%
b. Carrier child?

25\%
c. Child with hemophilia?

25\%
d. Two healthy children?

9/16 (56\%)

Hemophilia is a sex linked disorder. Kelly does not have hemophilia even though her mother did. Jim (Kelly's husband) is a hemophiliac. Their first child Barry is healthy but their other child Rachel is a hemophiliac. Draw a Pedigree for this family and a Punnett square for Jim and Kelly.

Sex linked recessive: Hemophilia
$X^{H}=$ healthy
$X^{h}=$ hemophilia

Sex linked recessive: Hemophilia
$X^{H}=$ healthy
$X^{h}=$ hemophilia

Hint: Only 1 person is unknown.

Sex linked recessive: Hemophilia

$$
\begin{aligned}
& \overline{X^{H}}=\text { healthy } \\
& X^{h}=\text { hemophilia }
\end{aligned}
$$

Hint: Only 1 person is unknown.

Sex linked recessive: Hemophilia

$$
\begin{aligned}
& \overline{X^{H}}=\text { healthy } \\
& X^{h}=\text { hemophilia }
\end{aligned}
$$

Sex linked recessive: Hemophilia
$X^{H}=$ healthy
$X^{h}=$ hemophilia

Hint: Only 1 person is unknown.

Sex linked recessive: Hemophilia

$$
\begin{aligned}
& \overline{X^{H}}=\text { healthy } \\
& X^{h}=\text { hemophilia }
\end{aligned}
$$

Hint: Only 1 person is unknown.

Practice Questions

1) How are sex-linked disorders different from autosome disorders?
2) Why are sex-linked disorders more common in males?
3) Write the genotype of a heterozygous female.
4) Write the genotype of a carrier female.
5) Examine Kelly and Jim's Punnett square. What are the chances they would have three children, all of whom are healthy?
