9.1 Why we Need to Eat

P. 394 - 399

Food for Growth & Maintenance

- Nutrients are the chemicals that an organism needs in order to ______, to build and repair tissues, and to produce ______.
- The nutrients that are important for keeping our bodies healthy are carbohydrates, proteins, lipids (fats), ______, minerals, and vitamins.

Energy Transfer and Use

- The chemical energy produced by plants (in the form of ______) is transferred to herbivores and omnivores.
 - Cells use the energy to fuel biological processes and physical activities such as growth and ______.
- In endothermic (warm-blooded) animals, some of this chemical energy is used to maintain a fairly constant body ______.
 - Because the body temperature of endotherms is normally higher than the surrounding, some thermal energy is _________ to the environment.

Factors that Affect Energy Requirements

- Endotherms require _______ energy to regulate their body temperature.
- Body Size: Larger animals generally eat _______ than smaller ones. However, small endothermic animals need to _______ than large endothermic animals.
 - For example, a 5000 kg elephant might eat 250 kg of food a day 5 % of its body mass. A 5 g shrew might have to eat 4 g of food a day 80 % of its body mass!
- Metabolic Rate : the rate at which the body converts stored energy into working energy
 - Metabolism : the set of chemical reactions that occur in living organisms necessary to maintain life
 - Catabolism the metabolic reactions that ______ down larger molecules into smaller subunits (e.g. breakdown of nutrients during digestion)
 - Anabolism the metabolic reactions that use energy to larger molecules from smaller subunits (e.g. growth and

repair)

- Factors Affecting Metabolic Rate
 - **Body size** \rightarrow a _____ body requires more energy
 - Physical activity ______ burn more energy than fat
 - Sex →males require ______ energy (due to larger size and areater muscle mass)
 - Age→______ with age
 (since they tend to be larger and have more muscle mass)
 - Hereditary factors→due to ______

Measuring Energy & BMR

- Energy is measured using an SI unit: the ______(J).
 - Joules are small, so we use the ______ (kJ) to refer to the energy requirements of people or the energy stored in foods (1 kJ = 1000 J).
- Another unit is also used a ______ (small c) is the amount of energy
 - required to raise the temperature of 1 g of water by 1 °C.
 - When referring to ______ energy, Calorie (big C) is used.
 - One Calorie equals _____ calories, or 4180 J.
- **Basal Metabolic Rate:** The rate at which energy is used by an organism when it is

The minimum amount of energy required to keep you alive.

- Calculating BMR:
 - Actual BMR Calculation:
 - based on the consumption of ______
 - a complex process and ______I for everyday use
 - Estimated BMR
 - BMR is generally ______
 - calculation takes into account four variables: height, weight, age, and sex
 - males tend to have a higher BMR than females by about 10 %.
 - energy requirements also depend on your ______
 level.
 - Note: estimated BMR does not take into account the ratio of _______to fat

BMR Calculation

Calculate either your own BMR, or one of a hypothetical scenario to practice using the formula.

Homework

P. 399 # 1, 2, 4 & 5

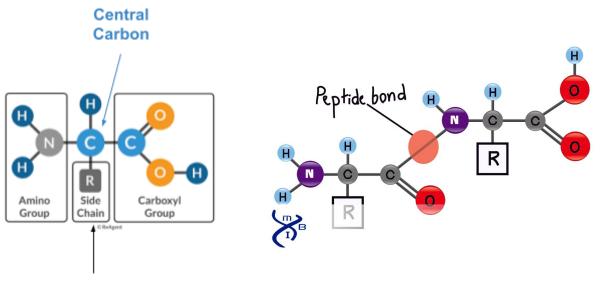
9.2 What and How Much Do We Need to Eat?

P. 400 - 405

Required Nutrients

- Your body needs six ______ nutrients in order to stay healthy:
 - Carbohydrates
 - Proteins
 - Fats
 - \circ Water
 - Vitamins
 - Minerals
- These are the building blocks of life.
 - If any are absent from your diet for too long, your cells will stop working properly.

<u>Carbohydrates</u>


- Main source of ______ for the body
- Composed of ____, ___, and ____ atoms
- Three main types:
 - Monosaccharides: one sugar (e.g. glucose and fructose)
 - **Disaccharides**: two sugars joined (e.g. sucrose)
 - Polysaccharides: many sugars_____ (e.g. cellulose)
- Polysaccharides
 - Starch (amylose):
 - made by plants for energy storage
 - made of branched _____ molecules
 - Cellulose
 - made and stored in plants, found in ______
 - structural molecules, straight rigid shape
 - we cannot digest cellulose, but it provides bulk (fiber) in our diet
 - Glycogen
 - made in ______ cells (stored in the liver and muscles) for energy
 - in glycogen, glucose subunits are more highly ______
 compared to starch molecules
 - when energy is needed in the body, glycogen is broken down into usable glucose

<u>Proteins</u>

- key building blocks of cells
- important structural molecules
- involved in all ______ activities, and are used to generate motion.
- some proteins serve as ______ chemical messengers released by cells in the body that influence cellular activity in another part of the body.

Protein Structure

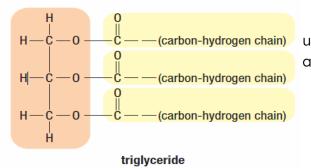
- Proteins are the most ______ of all nutrients and are made up of long chains of smaller molecules called amino acids and are highly variable in size and shape.
- There are _____ different amino acids that organisms use to build proteins.

Variable group

Protein Sources - Animal vs Plant

- Animal proteins contain all ______ essential amino acids
- Most plant proteins lack ______ one essential amino acid.
 - People who do not eat animal products must eat plant foods in combination to obtain all the amino acids they need.
- Animal muscle has a _____ concentration of protein than plant material
 - You have to eat a greater mass of plant material to obtain an equivalent amount of protein
- Protein Sources in our Diet:
 - Animal sources high in protein: meat, eggs, fish and cheese
 - Plant sources high in protein: beans, lentils, seeds and nuts
 - Your body separates the proteins you consume into individual amino acids so they can be rearranged and used as building blocks for ______ proteins

<u>Lipids</u>


- Provide a ______ source of energy for the body
- They help ______ fat soluble vitamins, are a main component of cell

_____ , and serve as ______ for the body

• Certain hormones, including sex hormones (e.g. estrogen and testosterone), are lipids

Lipid Structure

- Fats and oils are made up of triglycerides
- Each triglyceride is made up of three fatty acids ______ to a glycerol molecule

• Triglycerides can be either saturated or ----(carbon-hydrogen chain) unsaturated, depending on the structure of their fatty acid chains.

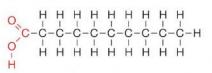
Saturated vs. Unsaturated Lipids

• Saturated Fats

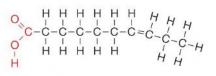
- Fatty acids contain _____ bonds only (dense structure)
- Usually ______ at room temperature (E.g. butter)
- Considered to be less healthy

• Unsaturated Fats

- Fatty acids contain bond(s)
 (bent/loose structure)
- Usually liquid at room temperature (E.g. Vegetable oil)
- Considered to be _____ healthy


Steroids

- A special group of lipids called steroids include:
 - Sex hormones: (e.g. testosterone and estrogen) control the development of male and female sex characteristics
 - Cholesterol is a key component of all ______ cell membranes; cholesterol has "good" and "bad" forms
 - Low-density lipoprotein (bad) can build up inside arteries, increasing risk of heart disease and stroke
 - High-density lipoprotein (good) absorbs cholesterol from blood to be eliminated


<u>Water</u>

- We need about _____ of water per day
- Our bodies are 55 60 % water
- Water is needed by our bodies:
 - for chemical reactions
 - to digest food
 - to eliminate waste prod_____
 - to regulate _____ temperature
 - to keep skin moist

Saturated

Unsaturated

<u>Vitamins</u>

- Organic molecules that the body requires in ______ amounts as essential nutrients
- Function: regulate cell functions, growth, and development
- Are either fat soluble (will dissolve in fats) or water soluble (will dissolve in water)

Vitamins: Storing and Eliminating

- Fat soluble vitamins <u>can be stored</u> in the body's fatty tissues for future use and are therefore not easy to ______ from the body if they are in excess (danger of toxicity)
 A, D, E, and K
- Water soluble vitamins <u>cannot be stored</u> in the body, and excess quantities are readily ______ in urine.

 $\circ \quad \text{B and C}$

Vitamin Sources

We obtain most of our vitamins from food, but vitamins A, D, and K can also be produced in our bodies.

- Vitamin A
 - The body can ______ a chemical called beta-carotene (found in green veggies, carrots, egg yolks, liver) into vitamin A.
- Vitamin D
 - Formed in the skin when the skin is exposed to ______. Our bodies can produce enough vitamin D from 10 min to 15 min of sunshine three times a week.
- Vitamin K
 - Synthesized by special bacteria found in the _____.

<u>Minerals</u>

- Minerals are _____ (e.g. calcium, sodium, oxygen, iron, phosphorus) required by the body in small amounts
- Function: play role in cell processes and repair
- Calcium and phosphorus -
 - The most _____ minerals
 - Critical in formation and maintenance of bones -
- Sodium and potassium -
 - Involved in _____ impulse transmission and muscle _____
- Iron -
 - Key component of the blood protein _____ that binds oxygen for transport
- Trace minerals include;
 - Fluorine, zinc, and copper

Body Mass Index

_____ of a person's height and weight

- General indicator of whether a person has a healthy body weight for their
- BMI = weight (kg) \div height (m)²

Balanced Eating

- There are three variables in maintaining a healthy dietary lifestyle: level of physical activity, ______ of food consumed, and ______ of food consumed.
- The key to maintaining a healthy weight is to ensure that the energy intake is ______ by the energy output.
- In a large majority of cases, obesity is the result of overeating, an ______ diet, and inactivity but genetics, ______ factors and ______, etc. often play a role.

Eating Disorders

- Eating disorders such as anorexia and bulimia are ______ disorders that can lead to serious physical health risks.
 - In a recent study, 27% of Ontario girls 12-18 years old were reported to be engaged in severely problematic food and weight behaviour.
 - Eating disorders are now the _____ most common chronic illness in adolescent girls.

Homework: P. 405 # 1, 3(b) & 4