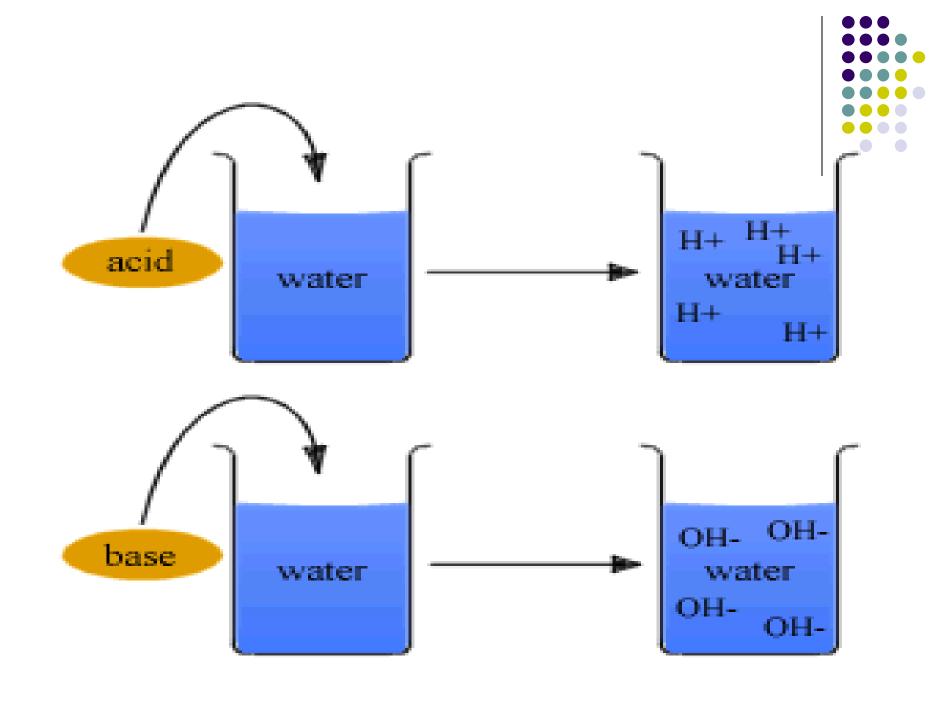

Learning Objectives

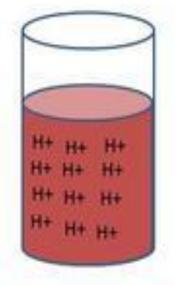
- To define acids and bases
- To recognize properties of acids and bases
- To name acids based on their formulas

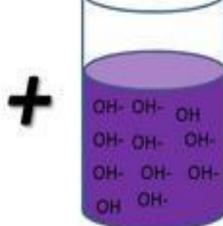
Acids and Bases

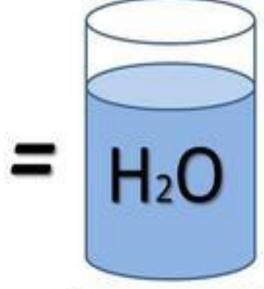
Chapter 7
Page 262



What are they?






- Acids are compounds that produce hydrogen ions (H+) when dissolved in water
- Bases are compounds that produce hydroxide ions (OH-) when dissolved in water

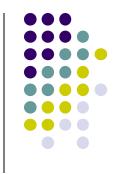
Acids contain Hydrogen ions also shown as H+. Bases contain Hydroxides also shown as OH-. Acids and Bases together cancel each other out and make water.

A comparison...

Acids

- Produce H+ ions
- Good conductors
- Taste sour
- Name ends with 'acid'
- Feel like water
- Chemical formula for an acid begins with 'H'
- Are molecular compounds, but may behave like ionic compounds in water

Bases


- Produce OH- ions
- Good conductors
- Taste bitter
- Name often end with 'hydroxide'
- Feel slippery
- Chemical formula usually ends with 'OH'
- Are ionic compounds

Acids

Form from non-metal oxides and water

 Form from metal oxides and water

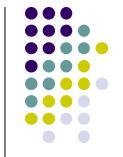
$$3NO_2 + H_2O \longrightarrow$$

 $2HNO_3 + NO$

$$MgO + H_2O \rightarrow Mg(OH)_2$$

- React with metals to produce hydrogen gas
- Eg: Mg + 2HCl yields
 MgCl₂ + H₂
- $2K + H_2SO_4$ yields $K_2SO_4 + H_2$

 Do not usually react with metals


Acids

- Turn blue litmus paper red
- Red litmus paper remains red (red = acid)
- Useful in the food industry because many harmful bacteria cannot survive in acid

Bases

- Blue litmus paper remains
 blue (blue = base)
- Turns red litmus paper
 blue
- Useful for industrial and cleaning applications, as well as heartburn medications

Acids

- Binary acids contain only 2 elements (HCI, HF, etc) and are named hydro___ic acid
- Name these:

HI

 H_2S

HBr

HCI

Bases

- Named the same way as any ionic compound:
- Name these:

NaOH

NH₄OH

 $AI(OH)_3$

- Oxyacids contain polyatomic ions, with hydrogen ions added to make the compound neutral and are named according to the polyatomic ion present, changing 'ate' to 'ic'
- Name these:

$$HNO_3$$
 (aq)

$$H_2CO_3$$
 (aq)

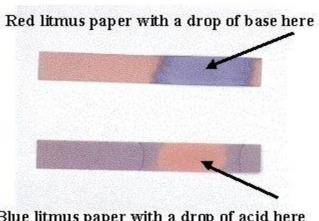
$$H_3PO_4$$
 (aq)

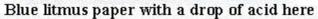
$$H_2SO_4$$
 (aq)

Acid-Base Indicators

- Many chemicals change colour when an acid or base is added
- These are called indicators

The colour is determined by the degree of


acidity or basicity



Indicator	Colour in Acid	Colour in Base
Phenolphthalein	Colourless	Pink
Litmus paper	Red	Blue

So basically, all you have to do is....

Page 271, # 1 − 8