Learning Objectives

- To observe the effect of light travelling in straight lines on the formation of images
- To observe a 'real' image
- To apply the laws of reflection for curved mirrors

11.9: Images in Curved Mirrors

Terminology of Concave Mirrors

Centre of Curvature (C): The centre of the sphere whose surface has been used to make the mirror.

Principal Axis: The line through the centre of curvature to the midpoint of the mirror.

• Vertex (V): The point where the principal axis meets the mirror.

Focus (F): the point where reflected rays from parallel incident rays pass through, or converge. This is why concave mirrors are sometimes called *converging* mirrors.

Laws of Reflection in Converging (Concave) Mirrors

1. A light ray **parallel** to the **principal axis** is reflected **through** the **focus**.

2. A ray **through** the **focus** will reflect **parallel** to the **principal axis**.

3. A ray through the centre of curvature is reflected back on itself.

4. A ray **aimed at the vertex** will follow the **law of reflection**.

Locating the Image in a Concave Mirror

Case A: Object is placed behind C

Case B: Object is placed at C

Case C: Object is placed between C and F

Case D: Object is placed at F C

Ray Diagram for Object Located at F (an image is <u>not</u> formed)

Case E: Object is placed in front of F

Real Images

- A real image is created when light rays actually arrive at the image location.
- If you place a screen in front of the mirror, a focused image will be seen.
- When an object is placed beyond F, an inverted, real image will be formed.
- When an object is placed in front of F, an upright, virtual image will be formed.

Properties of Images in Converging Mirrors

Object Location	Image <mark>S</mark> ize	Image Attitude	Image Location	Image Type
Beyond C	Smaller	Inverted	In front, closer	Real
At C	Same	Inverted	In front, same	Real
Between C & F	Larger	Inverted	In front, further	Real
At F	No	Clear	Image	
Inside F	Larger	Upright	Behind, further	Virtual

Applications of Converging Mirrors

- Searchlights
- Satellite dishes
- Solar cookers
- Stadium lighting

Concave mirrors cause reflected rays to **converge** to a central point (Focus), giving a bright, forward, beam of light. The less curvature, the longer the focal length.

Convex mirrors cause reflected rays to **diverge**, giving a much wider field of view.

In a convex / diverging mirror, F and C are **behind** the reflective surface.

Locating Images in **Diverging** Mirrors Rules:

1. A ray parallel to the principal axis is reflected **as if** it had come through the focus.

2. A ray aimed at the focus is reflected parallel to the principal axis.

3. A ray aimed at the centre of curvature is reflected back on itself.

Images in a Diverging (Convex) Mirror

 Images will always be smaller and virtual because rays never cross to form a real image.

Applications of Diverging Mirrors

- Rear-view mirrors
- Security mirrors

ROY G BIV says:

- Page 501 # 1 10
- Worksheet: Images
 in Curved Mirrors

