Learning Objectives

- To observe the effect of light travelling in straight lines on the formation of images
- To observe a 'real' image
- To apply the laws of reflection for curved mirrors

11.9: Images in Curved Mirrors

Convex vs．Concave

CBTOMTBE

The sphere is silvered on the inside to form a reflective surface on a concave mirror．

Cromeservio MNTロロロロ？

Terminology of Concave Mirrors

Centre of Curvature (C): The centre of the sphere whose surface has been used to make the mirror.

- Principal Axis: The line through the centre of curvature to the midpoint of the mirror.
- Vertex (V): The point where the principal axis meets the mirror.

Focus (F): the point where reflected rays from parallel incident rays pass through, or converge. This is why concave mirrors are sometimes called converging mirrors.

Centre of Curvature C (2F)

Focal
length (f)
Focal Point, or Focus (F)

Reflective Surface

Laws of Reflection in Converging (Concave) Mirrors

1. A light ray parallel to the principal axis is reflected through the focus.

2. A ray through the focus will reflect parallel to the principal axis.

3. A ray through the centre of curvature is reflected back on itself.

4. A ray aimed at the vertex will follow the law of reflection.

Locating the Image in a Concave Mirror

Case A: Object is placed behind C

Case B: Object is placed at C

Case C: Object is placed between C and F

Case D: Object is placed at F

Ray Diagram for Oijet Located at F (animetge is rot formed)

Case E: Object is placed in front of F

Real Images

- A real image is created when light rays actually arrive at the image location.
- If you place a screen in front of the mirror, a focused image will be seen.
- When an object is placed beyond F, an inverted, real image will be formed.
- When an object is placed in front of F, an upright, virtual image will be formed.

Properties of Images in Converging Mirrors

Object Location	Image Size	Image Attitude	Image Location	Image Type
Beyond C	Smaller	Inverted	In front, closer	Real
At C	Same	Inverted	In front, same	Real
Between C \& F	Larger	Inverted	In front, further	Real
At F	No	Clear	Image	
Inside F	Larger	Upright	Behind, further	Virtual

Applications of Converging Mirrors

- Searchlights
- Satellite dishes
- Solar cookers
- Stadium lighting

Concave mirrors cause reflected rays to converge to a central point (Focus), giving a bright, forward, beam of light. The less curvature, the longer the focal length.

Convex mirrors cause reflected

 rays to diverge, giving a much wider field of view.

In a convex / diverging mirror, F and C are behind the reflective surface.

Locating Images in Diverging Mirrors

Rules:

1. A ray parallel to the principal axis is reflected as if it had come through the focus.

2. A ray aimed at the focus is reflected parallel to the principal axis.

3. A ray aimed at the centre of curvature is reflected back on itself.

Images in a Diverging (Convex) Mirror

- Images will always be smaller and virtual because rays never cross to form a real image.

Applications of Diverging Mirrors

- Rear-view mirrors
- Security mirrors

ROY G BIV says:

- Page 501 \# 1 - 10
- Worksheet: Images in Curved Mirrors

