\qquad
During a chemical reaction, chemicals react to produce new substances. Is any mass lost in this process?
Purpose: to determine if mass is gained or lost during chemical reactions
Hypothesis: If two compounds react together to produce new products, then the mass of the products will be
\qquad to the mass of the reactants, because mass can be neither created nor destroyed.

Materials and Apparatus:

Erlenmeyer flask with rubber stopper electronic balance
2 graduated cylinders (10 mL)
baking soda (sodium hydrogen carbonate)
small test tube
scoopula
plastic dropper
sodium hydroxide (NaOH)

2 small glass beakers paper towels vinegar iron (III) nitrate $\left(\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}\right)$

Method - Part A:

1. Using the scoopula, place a small amount (~ 2 scoops) of baking soda in one of the small beakers.
2. Measure 5 ml vinegar into the other small beaker, using a clean graduated cylinder.
3. Place a paper towel on the electronic balance, and place the 2 glass beakers on the paper towel.
4. Record the mass of the reactants in table 1.
5. Carefully pour the vinegar into the baking soda.
6. Wait 30 seconds and record the mass of the 2 plastic beakers in the table 1.
7. Clean everything up: pour materials down the sink, and wash all apparatus thoroughly.

Method - Part B:

1. Measure 5 ml of sodium hydroxide (NaOH) into the Erlenmeyer flask, using a clean graduated cylinder.
2. Measure a dropper full of iron (III) nitrate $\left(\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}\right)$ into the small test tube using the second graduated cylinder.
3. Carefully slide the test tube into the Erlenmeyer flask. Do not allow the test tube contents to spill.
4. Place a stopper on the flask.
5. Measure and record the total mass of the flask and its contents in the table 1.
6. Slowly tip the flask back and forth to allow the two solutions to mix.
7. Measure and record the total mass of the flask and its contents once more.
8. Pour the contents of the flask into the waste container provided, being careful not to dispose of the small test tube.
9. Wash the flask, test tube, and stopper thoroughly. Be careful of the small test tube due to fragility!

Observations:

Table 1: Reactant and Product Masses before and after Chemical Reactions

	Part A baking soda + vinegar	Part B $\mathrm{NaOH}+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
Predicted change in mass (increase, decrease, no change)		
Mass of reactants (g)		
Mass of products (g)		
Calculated difference in mass, $+/-,(\mathrm{g})$ (mass of reactants - mass of products)		

Analyze and Evaluate:

1. Provide evidence that a chemical change occurred in the following parts of the lab? Part A: \qquad
\qquad
\qquad
Part B: \qquad
\qquad
\qquad
2. Were the predictions correct? (Yes or No)

Part A: \qquad Part B: \qquad
3. Mass can be neither created nor destroyed. Why did the mass change is Part A?
(Full Sentences)
\qquad
\qquad
\qquad
\qquad
\qquad
4. The products of the reaction in Part B are sodium nitrate and iron(III) hydroxide.
A) Write a word equation to describe this reaction.
B) Write a chemical equation to describe this reaction.

Word:

Chemical:

