Learning Objectives

- To recognize the components of chemical equations
- To recognize the three types of chemical equations
- To understand the law of conservation of mass

Chemicals and Their Reactions

Chapter 6

Where do we find Chemical Reactions?

• Everywhere!

What is a chemical reaction?

a reaction between 2 or more elements or compounds to form new substances, with new properties.

Describing Chemical Reactions

- Equations (either word or chemical) are used for reactions
- Equations are balanced

General Chemical Equation

Reactants yield Products

Substances used up during the reaction Substances produced during the reaction

Word Equations

Iron + sulfur iron (II) sulfide + energy

- The arrow indicates the direction of the reaction
- The '+' sign on reactant side means the substances must be in contact
- The '+' sign on product side means more than one product

Chemical Equations

Sulfur Photo from MII, courtesy of the Smithsonian Institution

Word vs Chemical Equations?

- chemical equations provide more detail such as:
 - Chemical formulas of substances involved
 - The ratio of substances involved
 - State of substances involved

State Symbols for Equations

Symbol	Meaning
(s)	Solid
(I)	Liquid
(g)	Gas
(aq)	Aqueous (dissolved in water)

 $Zn(s) + CuSO_4(aq) \longrightarrow ZnSO_4(aq) + Cu(s) + energy$

What do the state symbols tell you about what has happened in this reaction?

Energy and Reactions

- Exothermic reactions release energy
- Energy will be on the product side of the equation
- Exothermic = exit

Examples:

Energy and Reactions

- Endothermic reactions require energy in order to occur (absorb/consume energy)
- Energy will be on the reactant side of the equation
- Examples:

Energy and Reactions

- A reaction is exothermic if more energy is produced than was put into the reaction
- A reaction is endothermic if more energy is required to run the reaction than is produced

Exothermic or Endothermic?

• Energy + $BaO_2(s) \rightarrow Ba(s) + O_2(g)$

Endothermic

$\bullet NH_3(g) + HCI(g) \longrightarrow NH_4CI(s) + energy$

Exothermic

Exothermic or Endothermic?

 $C_6H_{12}O_6(s) + O_2(g) \longrightarrow CO_2(g) + H_2O(I) + energy$

Exothermic (This is cellular respiration)

 $CO_2(g) + H_2O(I) + energy \rightarrow C_6H_{12}O_6(s) + O_2(g)$

Endothermic (This is photosynthesis)

Conserving Mass in Reactions

Law of Conservation of Mass

 The total mass of the reactants equals the total mass of the products

LAW OF CONSERVATION OF MATTER: Matter cannot be made or destroyed by ordinary chemical means.

1 atom of carbon 2 atoms of oxygen

atom of carbon
 atoms of oxygen

$H_2(g) + CI_2(g) \longrightarrow HCI(I)$

2 atoms of hydrogen2 atoms of chlorine

atom of hydrogen
 atom of chlorine

2 atoms of hydrogen2 atoms of chlorine

2 atoms of hydrogen2 atoms of chlorine

 $H_2(g) + CI_2(g) \longrightarrow HCI(I)$ This is called a skeleton equation

$$H_2(g) + CI_2(g) \longrightarrow 2HCI(I)$$

This is the **balanced** equation

The coefficient refers to the entire molecule, not just to the adjacent atom

To balance things out....

Homework

Page 227 # 2 – 4, 7, 8
Page 232 # 2 – 4, 6

