Refraction Practice

Name: \qquad

On a separate piece of paper, solve the following questions showing all your work (formula, substitution, solution).

1. Calculate the index of refraction of a diamond if the speed of light in a diamond is $1.24 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
2. Calculate the speed of light in the following mediums:
a) water $(\mathrm{n}=1.33)$
b) plexiglass $(\mathrm{n}=1.51)$
c) quartz $(\mathrm{n}=1.46)$
3. Calculate the index of refraction for a substance if the speed of light in that medium is
a) $2.1 \times 10^{8} \mathrm{~m} / \mathrm{s}$
b) $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
c) $0.76 \times 10^{8} \mathrm{~m} / \mathrm{s}$
4. Light passes from substance one into substance two at an angle of 50°. The light passes through the $2^{\text {nd }}$ substance at an angle of 30°.
a) How do the densities of the two substances compare? How do you know?
b) Calculate the index of refraction for the second substance.
5. An angle of incidence of 20° in water results in an angle of refraction of 15°.
a) Is the second medium more or less optically dense than the first medium?
b) Find the index of refraction of the second medium.
6. If an angle of incidence of 40° resulted in an angle of refraction of 65°, what would you conclude about the densities of the two media?

Challenge!

7. It takes $4.0 \times 10^{-11} \mathrm{~s}$ for light to travel through a substance. If the distance the light travelled is 0.50 cm , find
a) the speed of light in the substance, in m / s
b) the index of refraction of the substance
c) the identity of the substance
