Learning Objectives

 To be able to identify and characterize both natural and artificial sources of light

What do these things have in common? How are they different?

• • 11. 2: Sources of Light

Luminous

 Objects that produce and emit their own light are luminous

• For example:

Non-Luminous

- Objects that do not produce their own light
- Most objects are non-luminous

Luminous or Non-Luminous?

Light from luminous sources

o Incandescence

- o Electric Discharge
- Phosphorescence
- Fluorescence
- Chemiluminescence
- Bioluminescence
- Triboluminescence
- Light emitting diodes (LED)

Make a table....

 Make a table 				
Source of	How it is	Advantages	Disadvantages	Examples
Light	produced			

Incandescence

How produced	Advantages	Disadvantages	Examples
very high temperature	Cheap	Very inefficient	

Centennial Light Bulb:

the world's longest lasting light bulb! How long has this bulb been burning?

Planned Obsolescence in Economics?

Electric Discharge

How produced	Advantages	Disadvantages	Examples
An electric current is passed through a gas	Coloured light can be produced	The light is not very bright	DRIVE IN Hamburgers Root Beer Floats Shakes Fries ENTER

How produced	Advantages	Disadvantages	Examples
UV light is converted to visible light immediately	More efficient and longer lasting than incandescent	Contain hazardous substances (Hg vapour) and are more expensive	

Phosphorescence

How produced	Advantages	Disadvantages	Examples
Absorption of UV light followed by emission of visible light over a period of time	Glow-in-the- dark watches, clock faces, T-Shirts, toys, novelty items)	Not very bright and slowly fade	

• • Chemiluminescence

How produced	Advantages	Disadvantages	Examples
Chemical reaction	Portable, durable, inexpensive Can be used when electricity would be unsafe	Single use	

Bioluminescence

How produced	Advantages	Disadvantages	Examples
Chemical reaction in a living organism	Attract mates Lure prey Scare predators	Limited applications	

Triboluminescence

How produced	Advantages	Disadvantages	Examples
From the friction of scratching crystals	??	??	LIFE SAVERS

Light Emitting Diodes

How	Advantages	Disadvantages	Examples
produced			
Electric	Very efficient	Most	
current	Durable	expensive	
passes	(50 000 hours)	in terms of light	
through a	Don't get hot	bulbs	
semi-	Dimmable Slow foilure		
conductor	Siuw-ialiule		22.20

- What is the definition of a luminous object?
 Which of the following objects are
 - 2. Which of the following objects are luminous? Stars, the moon, hot toaster filament, planets, desk lamp.
 - 3. Classify the following according to the process by which they emit light:
 - Red-hot stove burner
 - Glow-worm
 - A lit match
 - Classroom lights
 - Warning lights on car dashboards
 - Canada Day glow sticks

The Laser: A Special Type of Light

LASER: Light Amplification by Stimulated Emission of Radiation"

Light Bulbs

Made up of waves of many different energy levels.

But a laser light....

Emits electromagnetic waves of exactly the same energy levels


~~~~~

~~~~~~~~~~

So?

This results in laser light being a very pure colour and...

It is also very intense (EM waves travel in exactly the same direction, in unison)

So?

 A laser beam can travel great distances without spreading out.

In summary: Laser light is

- Pure in colour
- Very intense
- Concentrated in one narrow beam

Very Useful!

Industrial (cutting / boring / welding)

Medical (eyes, skin, tissue)

After

Measurement

Entertainment

Applications of laser light: security

Laser Larry says to do this:

Page 476 # 1 – 10 Page 478 # 1 - 6

